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CONSTRUCTION THEOREMS 
FOR POLYTOPES 

BY 

AMOS ALTSHULER AND IDO SHEMER 

ABSTRACT 

Certain construction theorems are represented, which facilitate an inductive 
combinatorial construction of polytopes. That is, applying the constructions to a 
d-polytope with n vertices, given combinatorially, one gets many combinatorial 
d-polytopes - -  and polytopes only - -  with n + I vertices. The constructions are 
strong enough to yield from the 4-simplex all the 1330 4-polytopes with up to 8 
vertices. 

1. Introduct ion  

One of the main techniques for an inductive construction of polytopes is the 

so-called "beneath-beyond"  technique, used since Euler's times, and formalized 

by Griinbaum in [9, section 5.2]. Grfinbaum's formulation is slightly erroneous, 

and therefore we reformulate it in Section 2. 

Basically, if O C R J is a d-polytope, x is a point in R d which lies outside Q, 

and P is the polytope conv(O tO {x}), Griinbaum's theorem determines the facial 

structure of P from that of O. In particular, if M, ~,  ~ is a partition of the facets 

of O such that x lies in the affine hull o.f every A E ,~', beyond every B E ~,  and 

beneath every C C ~, with respect to Q, then the combinatorial structure of P is 

determined merely by the triple ,if, ~ ,  ~ and is independent of the exact location 

of the point x, provided that there exists at least one suitable point x. 

The main obstacle in the use of Grfinbaum's theorem is that for a given 

partition .if, ~,  ~ of the facets of Q, it is often very difficult to determine 

whether or not there exists such a suitable x. In fact, for the combinatorial study 

of polytopes it is usually sufficient to know that there is a polytope O ' =  ~ (Q) ,  

where q~ is a projective transformation permissible for Q, or, more generally, a 

combinatorial equivalence, such that there is a suitable point x for the triple 

~o(~'), ~ ( ~ ) ,  q~(~), with respect to O'. 
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Thus there arises the question: For a given d-polytope Q and a partition M, 

~ ,  cr of the facets of Q, what are the conditions on the combinatorial structure 

of M, ~ and ~ that will guarantee the existence of a polytope Q' = q~(Q), where 

~o is a combinatorial equivalence, and the existence of a point x, such that x lies 

in the affine hull of every A E r beyond every B E q~(~) and beneath every 

C E q~(c~), with respect to q~(Q)? 

Two of the few (and simple) cases for which the answer is known to be 

positive, are the cases in which M is empty and ~ consists of either a single facet 

of Q or of all the facets of Q that are in the star of F in the boundary complex of 

Q, where F is any proper face of Q (see e.g., [10, p. 445]). The full answer to our 

question is believed to be difficult, as it clearly leads to a solution for the famous 

"Steinitz problem". The Steinitz problem asks for conditions which are neces- 

sary and sufficient for a combinatorial ( d -  1)-sphere S (in the sense of [3]), 

d --4, in order that S be realizable as the boundary complex of a d-polytope, 

and is perhaps the main open problem in the combinatorial theory of polytopes. 

In this paper we give a partial solution to the above question, in the form of 

three theorems (Theorems 1-3 in Section 4). Those theorems contain as 

particular cases most (if not all) of the partial solutions to our question which 

previously appeared in the literature. In the 4-dimensional case, they led to the 

construction of all the 4-polytopes with eight vertices (see [4]). Those three 

theorems were discovered by the first author while working on [3] and [4], and 

he also gave a direct proof for them. The second author suggested another 
approach, based on the sequence of lemmas given in Section 3. We preferred this 

approach, since it seems to us that those lemmas give a deeper background, from 

which perhaps more results can be drawn. In particular, see Remark 4 in Section 

5. 

In Section 2 we reformulate Griinbaum's theorem, and we introduce the basic 

concepts studied in the present paper. In Section 3 we present a sequence of 

lemmas which lead to the proofs of Theorems 1-3 in Section 4. Though here they 

serve mainly as a tool for proving Theorems 1-3, we believe that some of them 

may lead in the future to more results in the spirit of Theorems 1-3. We conclude 

in Section 5 with some remarks. In particular, in Remark 5 we discuss a 

relationship between the main concept in the present paper and the concept of 

shellability. Our notation follows [9]. 

2. Basic concepts 

Let Q c R d be a d-polytope, let x be a point in R d outside Q, and let P be the 

polytope conv(Q tO {x}). The point x determines a partition M, ~,  c~ of the 
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facets of Q such that x lie in the affine hull of every A @ sg, beyond every B E 

and beneath every C E ~, with respect to Q. The relation between the facial 

structure of P and the triple sg, N, c~ is determined by theorem 1 in [9, section 

5.2]. However, as pointed out by M. A. Perles (private communication), that 

theorem is slightly erroneous in the sense that part (ii) in Gr/inbaum's formula- 

tion is incorrect. The same error appears also in the formulation of this theorem 

in [13, section 2.5]. We therefore prefer the following formulation. 

THEOREM (Griinbaum). Let Q C R ~ be a d-polytope and let x @ R ~ be a point 

outside Q. Let ~4, ~,  qg be the partition of the facets of Q such that x lies in the 

affine hull of every A E ~l, beyond every B E ~3 and beneath every C E q~. Define 

three types of sets G: 

(i) G is a face of a member of ~. 

(ii) G---conv(F U {x}), where F is the intersection of a subset of ~ (or, 

equivalently, F is a face of Q and x E affF).  ( n ~ =  Q.) 

(iii) G --- conv(F U {x }), where F is a face of a member of ~ and also a face of a 
member of ~. 

Then the set of types (i), (ii), (iii) are faces of P = conv(Q u {x }), and each face 

of P is of exactly one of the above types. 

As useful consequences of this Theorem, we mention: 

(1) The facial structure of P depends only on the partition ~ ,  ~,  ~ of the 

facets of Q induced by x, and not on the exact location of the point x. 

(2) vert P = vert Q u {x} if and only if ~ O and vert Q c U ~ (every vertex 
of O has a facet in q~ that includes it). 

In this case, if F is a face of Q, then 

(3) F is a facet of P if and only if F ~ ~. 

(4) conv(F U {x}) is a facet of P if and only if either F ~ sg or O has exactly 
two facets which include F, one in N and the other in qg. 

Consequence (l) motivates the following definitions. 

DEFINITION. Let O be a d-polytope in R ~. Let sg, N be two disjoint 

collections of facets of O. We say that a point x (in R ~) covers the pair N [sg in 

O if x lies beyond (with respect to Q) all the members of N, x E n ~  a f fF  and 

x lies beneath all the other facets of O. The pair ~ [ M is coverable in O if there 
is a point x which covers N I s4 in O. 

Since we are interested mainly in the combinatorial structure of O and of the 

polytope obtained from O by covering some pair ~ [ s/, it is natural to define: 
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DEFINITION. ~ ].~' is C-coverable if there exists a combinatorial equivalence 

q~ such thai the induced pair q~(~)lcP(M) is coverable in r ~ I M is 

P-coverable in Q if there exists a nonsingular projective transformation r 

permissible for Q, such that q~(~)lq~(~) is coverable in ~o(Q). (Clearly, a 

P-coverable pair is also C-coverable.) 

The pair ~ [ d  is called strongly covetable if ~(~)1  q~(.d) is coverable in r  

for every combinatorial equivalence q~. 

Let O be a d-polytope such that 0 E i n t O .  The polar polytope O * =  

{y E R '~ : (y, x) -< 1 for all x E Q} of O is dual to O by the inclusion reversing 

mapping F ~ ]6 = {y @ O * : (y, x) = 1 for all x @ F} between ~ ( O )  and ,,%(O*). 

For detailed discussion of polarity see [9, section 3.4] or [13, section 2.2]. 

For ~ C ~ ( O ) ,  define: ~ = { F : F  E 9}. 

Let J be a nonempty proper face of O. Then there is a (d - 1 - dim J)-flat H 

such that 0 = O n H is a ( d - l - d i m J ) - p o l y t o p e  and the mapping F---~P = 

F N H is an isomorphism between the segment [J, Q] of the lattice ~ ( O )  and 

the lattice ~ ( O  n H). The polytope 0 is called the quotient polytope of O with 

respect to J, and also the face figure of O at J (vertex-figure if J is a vertex of Q) 

and is denoted also by O/J. (See [1, p. 98], [I3, p. 711 and [9, exercise 3.4.10(iii)].) 

Note that J N H = Q. 

3. Properties of coverable pairs 

The present section contains a sequence of Lemmas. In Lemmas 1-3 we 

investigate the connection between the coverability of ~ [ M  in Q and the 

existence of a certain hyperplane intersecting the polar polytope Q*. This 

facilitates the proof of Theorem 1 in Section 4. 

In Lemmas 4-6 we study the case in which all the members of M U ~ share a 

common vertex. We study the relationship between coverability in Q and 

P-coverability in a face figure of Q. This enables us to start from P-coverability in 

a low dimensional polytope, and to conclude about coverability in a higher 

dimensional polytope. 
Throughout the sequel Q is a d-polytope, 0 @ int Q and M, ~,  cs is a partition 

of the set of all facets of Q. 

Let x be a point in R ~. Consider the hyperplane H = {y ~ R d : (y, x) = 1}. H 

determines two open half-spaces H § = {y @ R d : (y, x) > 1}, H -  = 

{y E R  d : ( y , x ) <  1}. Clearly, x covers 5~ ]sO if and only if ~ /C  H, ~ C H § 

0 C H -  and ~ C H-.  This proves: 
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LEMMA 1. The following statements are equivalent: 

(a) ~ I M is coverable in Q. 

(b) There is a hyperplane which includes sg and strictly separates ~3 and 

u {0}. �9 

The following lemma is an immediate consequence of Lemma 1. 

LEMMA 2. The following statements are equivalent: 

(a) Either ~ I M or c~ [ M is coverable in Q. 

(b) ~ and ~ can be strictly separated by a hyperplane which includes M and 

does not pass through O. �9 

For a point c in int O*, define a transformation Tc by: 

x 
L x -  1-(c,x)"  

T~ is a nonsingular projective transformation, permissible for Q. 

Let T be a nonsingular projective transformation permissible for Q. Then T 

has a presentation 

Mx +b 
T x =  -(c,x) 

where M is a regular d x d matrix, b and c are points in R a and 6 E R .  6 ~  0 

since TO is defined. Assume, w.l.o.g., that 6 = 1.1 - (c, 0) = 1, hence, for every x 

in (9, 1 - ( c , x ) > 0 .  Thus c E in t  O*. Define a transformation S by 

Sx = Mx + (1 + (c, x))b. 

S is a regular affine transformation and 

x Mx (c, x)b 
ST~ = S 1 - (c, x ~  - 1-(c,x----~) + b 4 1-(c,x-----~)- Tx. 

It is easy to see that if S is a regular attine transformation, then ~ I M  is 

coverable in Q if and only if S ~  I SM is coverable in SQ. It follows that ~ I M is 

P-coverable in O if and only if Tc~ITcM is coverable in TcQ for some 

c E int Q*, where 

x 
T c x  - I  

1 - ( c ,  x )  " 

LEMMA 3. Assume that ~3 and ~ are not empty. The following statements are 

equivalent: 
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(a) ~ IM is P-coverable in Q. 
(b) ~ [ M  is P-coverable in Q. 
(c) :~ and ~ can be strictly separated by a hyperplane which includes M. 

PROOF. Assume that (a) holds. Then Tc~ t ToM is coverable in T~Q for some 

c E i n t Q * .  Note that (T~Q)* = Q * - c  (see [9, exercise 3.4.4]). It is easy to 

check that if F is a facet of Q, then the vertex of Q* - c which corresponds to 

the facet TcF of T~Q i s / ~ -  c. 

Hence,  by Lemma 1 (applied to TcQ), there exists a hyperplane H which 

includes {F - c : F E M} and strictly separates {F - c : F E ~}  and {F - c : F E 

~}. Therefore  (c) holds. 

Assume that (c) holds. Let H be a hyperplane which includes M and strictly 

separates ~ and q~. Choose a point c @ int Q* such that H - c strictly separates 

- c and (%~ - c) tA {0} (note that ~ #  Q). By Lemma 1, T ~  I T~M is coverable 

in ( Q * - c ) * .  �9 

The following Lemmas will enable us to add a vertex to Q by adding a vertex 

to a face figure of Q, which is a polytope of a lower dimension. 

LEMMA 4. Assume that ~ I M is P-covetable in Q. If there is a common vertex 
to all members of M U ~, then ~ I M is covetable in Q. 

PROOF. Assume that p ~ vert F for every member F of M U ~,  c E int Q* 

and y covers Tc~ITcM in TcQ. Denote by H + the open halfspace { x : l -  

(c, x) > 0}. For e > 0, define: z = ey + (1 - e)Tcp. Obviously, z covers T ~  I T~M 

in TcQ. If e is sufficiently small, then there is a point x in H+ such that z = Tcx 
(in fact x = z/(1 +(c, z))), and for every facet F of Q that includes p, the line 

aft{0, x} intersects aft F in H § T~ is permissible for H +, thus T~ maps every open 

segment (k, k ')  in H+ onto (T~k, T~k'). 

We shall prove that for e > 0 sufficiently small, the point x covers I~ I M. Let  F 

be a facet of Q not in M U ~,  such that p E F .  We have to show that x lies 

beneath F with respect to Q. z lies beneath TcF with respect to T~Q. Thus there 

is a point z' E aft T~F such that z is interior to the line segment [0, z']. Tjl(z  ') is 

in aft F, and, as z '  is close to Tr it is close to p and therefore lies in H § Since Tc 

is permissible for H § x = T e l ( z )  is interior to the line segment [0, TS~(z')], and 

lies therefore beneath F with respect to Q. In a similar manner one can see that x 

lies beyond every B ~ ~ and in the affine hull of every A E M. 

If e is sufficiently small, then X is sufficiently close to p, and therefore x lies 

beneath all the facets of O which do not include p. �9 
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DEFINITION. Let R be a subset of O. Define: 

~ ,  = ~ R ( O ) = { F : F  is a facet of O, F D R}. 

Let J be a nonempty proper face of O, and let H be a suitable flat such that 

() = O n H is the face figure O/J. For a face F in ofj, let P denote the face 

F A H  of (~. 

Assume in the sequel that ~1 and ~ are disjoint subsets of ~:.  

LEMMA 5. (a) The pair O tsg is coverable in O. 

(b) If the pair ~ I sd is coverable in O, then the pair ~ \(Yd U sg)lsg too is 

coverable in O. 

PROOF. Choose points p E re[int J, a @ relint n ~ / (we  adopt the convention 

n o  = Q) and a point x that covers ~ ]~1. The point a covers O1~/. For e > 0 

sufficiently small, the point (1 + e)p - ex covers ~j  \(:~ U s4) I ~/. �9 

REMARK. Assume that F E ,~j. It is clear that a point x in H lies beyond F 

with respect to O if and only if x lies beyond P with respect to 0.  

LEMMA 6. If {F : F @ @}l{ff: F @ d }  is P-coverable in Q, then ~ I d and 
~: \ ( ~  U s g ) l d  are coverable in Q. 

PROOF. Assume: T : H ~  H is a regular projective transformation, permis- 

sible for Q, and x E H covers { T F : F  E @}I{T_P:F E M} in T0. There is a 

regular projective transformation T, permissible for Q, such that T In = T. It is 

easy to check that if p E relint TJ and e > 0  is sufficiently small, then 

ex + (1 - e)p covers T@ [ TM in TQ. By Lemma 4, @ ] d is coverable in Q. 

By Lemma 5 the pair ~-j \ ( ~  U d ) [  d is coverable too. �9 

In the sequel we shall need the following trivial lemma. 

LEMMA 7. Let P be an rn-gon (in R2). Let El," �9 ", Em be all its edges in their 
natural cyclic order. Then, up to authomorphisms of P, exactly the following pairs 
are P-coverable in P: 

(1) {E, , . . . ,E.}[QS, O<-n<m,  
(2) {E2, ' ' ' ,E ,}I{E,} ,  1_--< n < m, 

(3) {E2,"  . ,E.-1}I{E,,E,},Z<-n <m. �9 

4. Construction theorems 

The previous lemmas lead to the following three theorems. 
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THEOREM 1. Let 0 be a d-polytope, d >= 2. Let F be a facet of 0 which is a 

simplex. Denote by 9 the set of facets of Q adjacent to F (I 9 I = d). Assume that 

~t and ~ are disjoint subsets of 9 (possibly empty). If  0 is not a simplex or if 

U [T~ 9,  then {F} U :T I ~ is P-coverable in Q. Moreover, if I ~ U 5f I <= d - 2, 

or none of the vertices of F is simple in Q (that is, of valence d), and if x covers 

T~J I Tsr in TO (where T is a regular projective transformation permissible for Q ), 

then vert(conv(TQ U {x})) = vert TQ U {x}. 

PROOF. Consider the polytope Q* (0 E int Q). Denote by H the hyperplane 

spanned by the vertices 0 of Q*, G E 9. Assume that 16 E H +. Clearly 16 is the 

only vertex of Q* lying in H +. Applying a small perturbation to H, it passes 

through {(~ : G C ~} and vert Q* n H + = {F} U ~. The assertions now follow 

from Lemma 3 and consequence (2) of Griinbaum's theorem (in Section 1). �9 

A particular case of Theorem 1 appeared in [14] and in [12]. 

THEOREM 2. Let Q C R d (d >= 4) be a d-polytope, let L be a (d - 3)-face of Q 

and let F~, . . . ,  F,, be all the facets of Q in st(L, Q) in their natural cyclic order, 

that is, F~ n F~+~ (1 <-_ i <= m, where F,,+~ = F~) is the (d - 2)-face common to F~, 

F~+~ and contains L. Let p be a vertex of L and let 9 be the set of all the facets of Q 

which contain p. Then the following pairs are strongly coverable in Q: 

(1) {F~, - - . ,F .}]O ( l~n_-< m). 

(2) {F2, ' ' ' ,F,}I{F~} (2--<n _--<m). 

(3) {F2,'- ",F,-,}I{Ft, F,} (3--<--n -<_m). 
(4) (l_-<n -<m). 
(5) 9 \ { F , , . . . , F , } I { F , }  (2=<n ~ m ) .  

(6) 9 \ {F , , . . . , F . } I{F , ,F . }  (3_-< n _-< m), 

In every case, if x covers the suitable pair ~ Is d, then vert(conv(Q u {x}))= 

vert O u {x}. 

PROOF. (1)-(3), n < m. Apply Lemma 7 to a face figure of O at L, and 

Lemma 6 with J = L. 

(1)-(3), n = m. Apply both parts of Lemma 5 with J = L. 

(4)-(6). These cases follow from the cases (1)-(3) by Lemma 5 with J = {p}. 

So far we proved coverability. However, since our proof used just the 

combinatorial structure - -  rather than the geometric structure - -  of ,~(O), the 

strong coverability follows. 

Suppose x covers a pair ~ I ~ of one of the six cases. ~ ~ ~ ,  thus x ~ O. In all 

the six cases, Q has a facet F that contains p and does not belong to ~3 U ~. If q 

is a vertex of Q, other than p, then Q has a facet F '  such that q E F '  and p ~ F'. 
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Obviously F ' ~ U M .  By consequence (2) of Griinbaum's theorem, 

vert(conv(Q O {x})) = vert Q U {x}. �9 

A particular case of Theorem 2(1) with d = 4  was already known to 

Griinbaum and Sreedharan [10, p. 445]. 

THEOREM 3. Let Q C R d be a d-polytope, d >= 3, let F be a facet of Q and let p 

be a vertex of F. Define: ~g = { G : G  is a facet of Q, p E G ,  G # F } ,  ~ = 

{G E ~ : dim(G rq F) = d - 2}. (~  is just the set o[[acets of Q adjacent to F and 

containing p.) Assume: ]~1=  d - 1 .  (That is, the valence of p in F is d - 1.) 
Then for every two disjoint subsets fie, ~ of ~ with fie U ~ # ~ (including the 

cases fie = Q, ~ = ~ )  the following pairs are strongly coverable in Q : 

(1) IF}t0 field,  
(2) *\(fie U ~ ) 1 ~ .  

In both cases, if x covers the suitable pair ~ I M, then vert(conv(Q U (x})) = 

vert O U {x}. 

PROOF. We shall prove coverability: 

(1) ~ tO fie# ~, hence either ~ t0 fie# ~ or ~ # ~ (the vertex p is not simple). 

Apply Theorem 1 to a vertex figure of O at p, and use Lemma 6. 
(2) Follows from (1) by Lemma 5(b) with J = {p}. 

The strong coverability and the assertion about the vertices of conv(O to {x}) 

follow in a manner similar to the proper part of the proof of Theorem 2. �9 

5. Remarks 

(1) Theorems 1, 2, 3 have been programmed and used in [4] for an inductive 

construction of 4-polytopes with 8 vertices from those with 7 vertices. Surpris- 
ingly, they yielded all the 1294 4-polytopes with 8 vertices. Moreover, the 
programmed version of Theorems 1, 2, 3 has been repeatedly applied to the 
4-simplex, and yielded the 4 4-polytopes with 6 vertices, and the 31 4-polytopes 
with 7 vertices. 

(2) If Q is a rational polytope (see [9, p. 92]) and Q' is the polytope 

conv(O U {x}) obtained from Q by means of any of our Theorems 1, 2, 3, then 

Q' too is a rational polytope. This follows from the fact, which is easily 

verifiable, that each of the Lemmas 1-7 is correct also if we replace the 

Euclidean space R ~ by the rational space Qd. 

The fact that there exists a non-rational polytope (the "smallest" known is of 

dimension 8 and had 12 vertices [9, p. 94]), shows that not all the d-polytopes can 

be obtained from a d-simplex by a repeated application of our Theorems and 
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Lemmas. In fact, one can easily check that, following Altshuler's notation in [2], 

the polytopes N90 and N92 cannot be constructed by our Theorems or Lemmas. 

(3) Note that in parts (1), (2) and (3) of Theorem 2, the strong coverability of 

each of the discussed pairs is completely independent of the combinatorial 
structure of the facets of Q that are not in the pair. This motivates the following 

definitions: 
Let Q be a d-polytope and let ~ I~t be a coverable pair in Q. We say that the 

pair ~ I~t is universally coverable if for every d-polytope Q'  such that there is 

an injection q~ from ~ U ~ into the set of facets of Q'  with the property that 

dim n q~(~) = dim n ~ for every ~ c ~ U 9~, the pair q~(~) I ~ ( ~ )  is coverable 

in Q'.  The concepts universally P-covetable pair and universally C-covetable 

pair are defined similarly. 

Obviously, universal coverability implies strong coverability. 

It is easy to see that each of the pairs in parts (1), (2) and (3) of Theorem 2 is 

universally coverable; in the notation of Theorem 3, the pair {F} U 5r [ ~  \ 5r is 

universally coverable and in the notation of Theorem 1, if O is not a simplex 

then the pair {F} U 5r [ ~ \ 5r is universally P-coverable. 

(4) Lemma 5 can be generalized as follows: 

Let J 1 C . . .  CJk = J (k _-> 1) be a strictly increasing sequence of non-empty 

proper faces of O. Assume that M and ~ are two disjoint subsets of ~j .  Define: 

= u )). 

LEMMA 8. I f  {F : F E ~}]{P : F E ~/} is P-covetable in (~ then ~ [s~ is 

covetable in Q. 

PROOF. By induction on k, using the same method of Lemma 5. �9 

The construction of Lemma 8 is called sewing through the k-tower J1," �9 ", Jk. 

It enables one to obtain additional theorems, in dimension d, from an existing 

theorem in a lower dimension. Our Theorems can be viewed as particular cases 

of sewing with k = 1 and k = 2. For example, Theorem 2(4) with n = m is 

sewing through the 2-tower ./1 = {P}, ]2 = L, with ~ = ~ = 0 .  
In [14] the second author developed the sewing technique for constructing 

neighborly 2m-polytopes (m >= 2). The "facet-splitting" operation of Barnette 

[6] is dual to the sewing construction. The relation between these two construc- 

tions is discussed in [14, section 7.4]. 
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(5) In Lemmas 1-3 we gave some necessary properties of coverability. 

Another  necessary property of a coverable pair is its shellability. (Consult [7] 

and [8] for definitions.) 

LEMMA 9. Assume  ~ I ~l is C-coverable in Q. Then Q has a shelling 

F ~ , . . . , F , , . . . , F ~ , . . . , F , ,  O<-r<=s<t  

such that 5~ = { F I , - ' . , F , } ,  M = { F , , . .  ",Fs} and {F~ , . . . ,F , }  is the set of all 

facets of O. 

PROOF. We give the outline of the proof, based on lemma 2.1 in [7]. W.l.o.g., 

I ~ is coverable in Q. By Lemma 1 there is a point h such that (h,/6) < 1 for 

F E ~3, (h, F)  = 1 for F E ~ and (h,/6) > 1 otherwise. Choose a point k such that 

( k , F ) ~  (k ,F ' )  whenever F ~  F' .  For )t > 0, define: f = h + Ak. Define also: 

r = ] ~ I, s = r + I~t I. If A is sufficiently small, then there is an ordering F1 , . . . ,  F, 

of all the facets of Q, such that ( f , ~ ) < ( f , ~ )  for 1 <-_ i < j  <= t, ~ = { F I , . . . , E }  

and ~r = {E+1, �9 �9 ", F,}. By lemma 2.1 in [7] F1," �9 ", F~ is a shelling. �9 

(6) The problem of C-coverability for d = 3 is partially settled by Barnette 's  

theorem [5]. Let P be a 3-polytope and let ~ be a non-empty set of facets of P. 

An edge E of P is called a boundary edge of ~ if E is an edge of exactly one 

member of 5& Then 5~ l ~  is C-coverable in P if and only if the graph spanned by 

the boundary edges of ~3 is a (non-empty) simple circuit. 

(7) By a result due to Shephard (see [16] or [11]), we obtain a similar result for 

d-polytopes P with d + 2 vertices. Let  ~3 be a non-empty set of facets of P. Then 

~ l  ~ is P-coverable in P if and only if the set U ~  is a ( d -  1)-ball. 
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