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CONSTRUCTION THEOREMS
FOR POLYTOPES

BY
AMOS ALTSHULER AND IDO SHEMER

ABSTRACT

Certain construction theorems are represented, which facilitate an inductive
combinatorial construction of polytopes. That is, applying the constructions to a
d-polytope with n vertices, given combinatorially, one gets many combinatorial
d-polytopes — and polytopes only — with n + 1 vertices. The constructions are
strong enough to yield from the 4-simplex all the 1330 4-polytopes with up to 8
vertices.

1. Introduction

One of the main techniques for an inductive construction of polytopes is the
so-called “beneath-beyond” technique, used since Euler’s times, and formalized
by Griinbaum in {9, section 5.2]. Griinbaum’s formulation is slightly erroneous,
and therefore we reformulate it in Section 2.

Basically, if Q CR* is a d-polytope, x is a point in R* which lies outside Q,
and P is the polytope conv(Q U {x}), Griinbaum’s theorem determines the facial
structure of P from that of Q. In particular, if &, 8. € is a partition of the facets
of Q such that x lies in the affine hull of every A € ¢/, beyond every B € %, and
beneath every C € €, with respect to Q, then the combinatorial structure of P is
determined merely by the triple &, %, € and is independent of the exact location
of the point x, provided that there exists at least one suitable point x.

The main obstacle in the use of Griinbaum’s theorem is that for a given
partition &, 9B, € of the facets of Q, it is often very difficult to determine
whether or not there exists such a suitable x. In fact, for the combinatorial study
of polytopes it is usually sufficient to know that there is a polytope Q' = ¢(Q),
where ¢ is a projective transformation permissible for Q, or, more generally, a
combinatorial equivalence, such that there is a suitable point x for the triple
o(A), ©(B), ¢(€), with respect to Q.
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Thus there arises the question: For a given d-polytope Q and a partition &,
B, € of the facets of Q, what are the conditions on the combinatorial structure
of o, B and ¥ that will guarantee the existence of a polytope Q' = ¢(Q), where
¢ is a combinatorial equivalence, and the existence of a point x, such that x lies
in the affine hull of every A € ¢ (&), beyond every B € ¢ (%) and beneath every
C € ¢ (%), with respect to ¢(Q)?

Two of the few (and simple) cases for which the answer is known to be
positive, are the cases in which o is empty and % consists of either a single facet
of Q or of all the facets of Q that are in the star of F in the boundary complex of
Q, where F is any proper face of Q (see e.g., [10, p. 445]). The full answer to our
question is believed to be difficult, as it clearly leads to a solution for the famous
“Steinitz problem”. The Steinitz problem asks for conditions which are neces-
sary and sufficient for a combinatorial (d —1)-sphere S (in the sense of [3]),
d Z 4, in order that S be realizable as the boundary complex of a d-polytope,
and is perhaps the main open problem in the combinatorial theory of polytopes.

In this paper we give a partial solution to the above question, in the form of
three theorems (Theorems 1-3 in Section 4). Those theorems contain as
particular cases most (if not all) of the partial solutions to our question which
previously appeared in the literature. In the 4-dimensional case, they led to the
construction of all the 4-polytopes with eight vertices (see [4]). Those three
theorems were discovered by the first author while working on [3] and [4], and
he also gave a direct proof for them. The second author suggested another
approach, based on the sequence of lemmas given in Section 3. We preferred this
approach, since it seems to us that those lemmas give a deeper background, from
which perhaps more results can be drawn. In particular, see Remark 4 in Section
5.

In Section 2 we reformulate Griinbaum’s theorem, and we introduce the basic
concepts studied in the present paper. In Section 3 we present a sequence of
lemmas which lead to the proofs of Theorems 1-3 in Section 4. Though here they
serve mainly as a tool for proving Theorems 1-3, we believe that some of them
may lead in the future to more results in the spirit of Theorems 1-3. We conclude
in Section 5 with some remarks. In particular, in Remark 5 we discuss a
relationship between the main concept in the present paper and the concept of
shellability. Our notation follows [9].

2. Basic concepts

Let Q C R? be a d-polytope, let x be a point in R? outside Q, and let P be the
polytope conv(Q U {x}). The point x determines a partition o, %, € of the
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facets of Q such that x lie in the affine hull of every A € o, beyond every B € @
and beneath every C € €, with respect to Q. The relation between the facial
structure of P and the triple of, 8B, € is determined by theorem 1 in [9, section
5.2]. However, as pointed out by M. A. Perles (private communication), that
theorem is slightly erroneous in the sense that part (ii) in Griinbaum’s formula-
tion is incorrect. The same error appears also in the formulation of this theorem
in [13, section 2.5]. We therefore prefer the following formulation.

THEOREM (Griinbaum). Let Q CR* be a d-polytope and let x €R* be a point
outside Q. Let s, B, € be the partition of the facets of Q such that x lies in the
affine hull of every A € o, beyond every B € B and beneath every C € €. Define
three types of sets G:

(i) G is a face of a member of 6.

(i) G =conv(FU/{x}), where F is the intersection of a subset of { (or,
equivalently, F is a face of Q and x €afi F). (N = Q.)

(iii) G =conv(F U{x}), where F is a face of a member of B and also a face of a
member of €.

Then the set of types (i), (i), (iii) are faces of P = conv(Q U {x}), and each face
of P is of exactly one of the above types.

As useful consequences of this Theorem, we mention:

(1) The facial structure of P depends only on the partition &, B, € of the
facets of Q induced by x, and not on the exact location of the point x.

(2) vert P =vert Q U{x}if and only if B# & and vert O C U € (every vertex
of Q has a facet in € that includes it).

In this case, if F is a face of Q, then

(3) F is a facet of P if and only if FE €.

(4) conv(F U {x})is a facet of P if and only if either F € of or Q has exactly
two facets which include F, one in & and the other in €.

Consequence (1) motivates the following definitions.

DEFINITION.  Let Q be a d-polytope in R*. Let &, B be two disjoint
collections of facets of Q. We say that a point x (in R") covers the pair B id in
Q if x lies beyond (with respect to Q) all the members of B, x € (e aff F and
x lies beneath all the other facets of Q. The pair B | o is coverable in Q if there
is a point x which covers B |« in Q.

Since we are interested mainly in the combinatorial structure of Q and of the
polytope obtained from Q by covering some pair & , o, it is natural to define:
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DEFINITION. B | of is C-coverable if there exists a combinatorial equivalence
¢ such that the induced pair (p(%)|(p(.$2¢) is coverable in ¢(Q). B l.szf is
P-coverable in Q if there exists a nonsingular projective transformation e,
permissible for Q, such that o(®B)|¢(s) is coverable in ¢(Q). (Clearly, a
P-coverable pair is also C-coverable.)

The pair | oA is called strongly coverable if ¢(B) ’ () is coverable in ¢(Q)
for every combinatorial equivalence ¢.

Let Q be a d-polytope such that 0€int Q. The polar polytope Q* =
{y €R‘:(y,x)=1 for all x € Q} of Q is dual to O by the inclusion reversing
mapping F— F ={y € O*:(y,x) =1 for all x € F} between %(Q) and F(Q*).
For detailed discussion of polarity see [9, section 3.4] or [13, section 2.2].

For @ C #(Q), define: 9 ={F:F € 9}.

Let J be a nonempty proper face of Q. Then there is a (d —1 —dim J)-flat H
such that @ = Q N H is a (d —1—dim J)-polytope and the mapping F — F =
F N H is an isomorphism between the segment [J, Q] of the lattice #(Q) and
the lattice #(Q N H). The polytope Q is called the quotient polytope of Q with
respect to J, and also the face figure of Q at J (vertex-figure if J is a vertex of Q)
and is denoted also by Q/J. (See {1, p- 98], [13, p. 71] and [9, exercise 3.4.10(iii)].)
Note that JNH =.

3. Properties of coverable pairs

The present section contains a sequence of Lemmas. In Lemmas 1-3 we
investigate the connection between the coverability of %3 lyﬂ in Q and the
existence of a certain hyperplane intersecting the polar polytope Q*. This
facilitates the proof of Theorem 1 in Section 4.

In Lemmas 4-6 we study the case in which all the members of o U & share a
common vertex. We study the relationship between coverability in Q and
P-coverability in a face figure of Q. This enables us to start from P-coverability in
a low dimensional polytope, and to conclude about coverability in a higher
dimensional polytope.

Throughout the sequel Q is a d-polytope, 0 € int Q and &, %, € is a partition
of the set of all facets of Q.

Let x be a point in R%. Consider the hyperplane H ={y €R*:(y,x)=1}. H
determines two open half-spaces H'={y €R‘:(y,x)>1}, H =
{y ER* :{y,x)<1}. Clearly, x covers B | if and only if 4 CH, BCH",
0€ H and € C H™. This proves:
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LemMa 1. The following statements are equivalent:

(a) B ’&f is coverable in Q.

(b) There is a hyperplane which includes i and strictly separates B and
€ U {0}. [ ]

The following lemma is an immediate consequence of Lemma 1.

LEmMMA 2. The following statements are equivalent:

(a) Either B | sf or €| is coverable in Q.

(b) B and € can be strictly separated by a hyperplane which includes s and
does not pass through (. |

For a point ¢ in int Q*, define a transformation T. by:

X

T =T"ex

T. is a nonsingular projective transformation, permissible for Q.
Let T be a nonsingular projective transformation permissible for Q. Then T
has a presentation

_ Mx+b
Tx_S—(c,x)

where M is a regular d X d matrix, b and ¢ are points in R and 6 ER. § #0
since T0 is defined. Assume, w.l.o.g., that § = 1. 1 —(c,0) = 1, hence, for every x
in Q, 1—{(c¢,x)>0. Thus ¢ €int Q*. Define a transformation S by

Sx = Mx +(1+(c, x))b.
S is a regular affine transformation and

Mx +b (e, x)b = Tx.

— X — =
S =S o " Tt P T T=tc.0)

It is easy to see that if S is a regular affine transformation, then % 'Jd is
coverable in Q if and only if SB | S#f is coverable in SQ. It follows that B ld is
P-coverable in Q if and only if TCQBITC% is coverable in T.Q for some
¢ €int Q*, where

X

=Tt

LEMMA 3.  Assume that B and € are not empty. The following statements are
equivalent:
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(2) B | is P-coverable in Q.
(b) € l.sd is P-coverable in Q.
(c) B and € can be strictly separated by a hyperplane which includes 4.

PROOF. Assume that (a) holds. Then T.% I T.o is coverable in T,Q for some
¢ €Eint Q*. Note that (T.Q)* = Q* —c¢ (see [9, exercise 3.4.4]). It is easy to
check that if F is a facet of Q, then the vertex of Q* — ¢ which corresponds to
the facet T.F of T.Q is F —c.

Hence, by Lemma 1 (applied to T.Q), there exists a hyperplane H which
includes {F — ¢ : F € o} and strictly separates {F—c: FE®B}and {F~c:F€
¥}. Therefore (c) holds.

Assume that (c) holds. Let H be a hyperplane which includes & and strictly
separates $ and €. Choose a point ¢ € int Q* such that H — ¢ strictly separates
B — ¢ and (6 — ¢)U{0} (note that €# ). By Lemma 1, T.% ] T.A is coverable
in (Q*—c¢)*. |

The following Lemmas will enable us to add a vertex to Q by adding a vertex
to a face figure of Q, which is a polytope of a lower dimension.

LEMMA 4. Assume that B | o is P-coverable in Q. If there is a common vertex
to all members of A U B, then B | of is coverable in Q.

PrROOF. Assume that p € vert F for every member F of f U %, ¢ €Eint Q*
and y covers T.% | T.# in T.Q. Denote by H' the open halfspace {x:1—
{c,x)>0}. For ¢ >0, define: z = gy + (1 — ¢) T.p. Obviously, z covers T.% I T.od
in T.Q. If ¢ is sufficiently small, then there is a point x in H" such that z = Tex
(in fact x = z/(1 +{c, z))), and for every facet F of Q that includes p, the line
aff{0, x} intersects aff F in H". T, is permissible for H", thus T, maps every open
segment (k, k') in H" onto (Tck, T.k").

We shall prove that for £ > 0 sufficiently small, the point x covers & | A Let F
be a facet of Q not in & U %, such that p € F. We have to show that x lies
beneath F with respect to Q. z lies beneath T.F with respect to T.Q. Thus there
is a point z' € aff T.F such that z is interior to the line segment [0, z']. T.'(z') is
in aff F, and, as z' is close to T.p, it is close to p and therefore lies in H". Since T.
is permissible for H, x = T:'(z) is interior to the line segment [0, T.'(z")], and
lies therefore beneath F with respect to Q. In a similar manner one can see that x
lies beyond every B € & and in the affine hull of every A € 4.

If ¢ is sufficiently small, then x is sufficiently close to p, and therefore x lies
beneath all the facets of Q which do not include p. |
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DEFINITION. Let R be a subset of Q. Define:
Fr = Fr(Q)={F:F is a facet of Q, F D R}.

Let J be a nonempty proper face of Q, and let H be a suitable flat such that
O = QN H is the face figure Q/J. For a face F in %, let F denote the face
FNH of Q.

Assume in the sequel that o and %@ are disjoint subsets of ;.

LEMMA 5. (a) The pair @]&4 is coverable in Q.
(b) If the pair B l.szi is coverable in Q, then the pair F\(B U &1)]&4 too is
coverable in Q.

ProoF. Choose points p € relint J, a Erelint N o (we adopt the convention
M@ = Q) and a point x that covers B | of. The point a covers & | . For £ >0
sufficiently small, the point (1 + ¢)p — ex covers  \(B U A) [ A. |

REMARK. Assume that F € %,. It is clear that a point x in H lies beyond F
with respect to Q if and only if x lies beyond F with respect to Q.

Lemma 6. If {F:F€ %}[{F:Fed} is P-coverable in Q, then B l&l and
FINRBUA) I A are coverable in Q.

PrOOF. Assume: T:H — H is a regular projective transformation, permis-
sible for Q, and x € H covers {TF:FE%}'{TF:FE&} in TQ. There is a
regular projective transformation T, permissible for Q, such that T | w=TItis
easy to check that if p €relint TJ and e >0 is sufficiently small, then
ex +(1—¢)p covers TB | Tof in TQ. By Lemma 4, B | of is coverable in Q.

By Lemma 5 the pair %, \(B U &) | o is coverable too. [ |
In the sequel we shall need the following trivial lemma.

LEMMA 7. Let P be an m-gon (in R°). Let E,,- - -, E,. be all its edges in their
natural cyclic order. Then, up to authomorphisms of P, exactly the following pairs
are P-coverable in P:

1) {E:,- -, E.}|D, 0=n <m,
(2) {EZ""aEn} {El}, 1=n <m,
(3) {Ez,"',En—l}l{Ei,En},Zén<m_ .

4. Construction theorems

The previous lemmas lead to the following three theorems.
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THEOREM 1. Let QO be a d-polytope, d Z2. Let F be a facet of Q which is a
simplex. Denote by @ the set of facets of Q adjacent to F (|9 | = d). Assume that
R and & are disjoint subsets of @ (possibly empty). If Q is not a simplex or if
R U F#D, then {F}U & | R is P-coverable in Q. Moreover, if |R U F|=d —2.
or none of the vertices of F is simple in Q (that is, of valence d), and if x covers
TR ] Tsd in TQ (where T is a regular projective transformation permissible for Q),
then vert(conv(TQ U{x}))=vert TO U{x}.

Proor. Consider the polytope Q* (0 €int Q). Denote by H the hyperplane
spanned by the vertices G of Q*, G € 9. Assume that F € H*. Clearly F is the
only vertex of Q* lying in H". Applying a small perturbation to H, it passes
through {G: G € R} and vert Q* N H" = {F}U & The assertions now follow
from Lemma 3 and consequence (2) of Griinbaum’s theorem (in Section 1). W

A particular case of Theorem 1 appeared in [14] and in [12].

THEOREM 2. Let Q CR* (d = 4) be a d-polytope, let L be a (d —3)-face of Q
and let F\,- - -, F,, be all the facets of Q in st(L, Q) in their natural cyclic order,
that is, F; N F.y (1=i = m, where F,,, =F)) is the (d —2)-face common to F;,
Fi.. and contains L. Let p be a vertex of L and let & be the set of all the facets of Q
which contain p. Then the following pairs are strongly coverable in Q:

W) {F,-- F}D (1=n=m)

Q) {F, - F}{F} 2=n=m).

QB) (P, Fui}|[{F, i} 3= n=m).

@) D\F,---, F}D (1=n=m).

) 9\{F,-- - F}{F} 2=n=m)

©6) D\{F,, -, F.}|{F,F.} 3=n=m).

In every case, if x covers the suitable pair B '.sd, then vert(conv(Q U {x}))=
vert Q U {x}.

Proor. (1)}~(3), n <m. Apply Lemma 7 to a face figure of Q at L, and
Lemma 6 with J = L.

(1}-(3), n = m. Apply both parts of Lemma 5 with J =L.

(4)-(6). These cases follow from the cases (1)-(3) by Lemma 5 with J = {p}.

So far we proved coverability. However, since our proof used just the
combinatorial structure — rather than the geometric structure — of #(Q), the
strong coverability follows.

Suppose x covers a pair B ) & of one of the six cases. B # &, thus xZ Q. In all
the six cases, Q has a facet F that contains p and does not belongto B U «. If q
is a vertex of Q, other than p, then Q has a facet F’ such that ¢ € F’ and pZ F'.
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Obviously F'Z€ 3 U . By consequence (2) of Griinbaum’s theorem,
vert(conv(Q U {x})) = vert Q U {x}. [ ]

A particular case of Theorem 2(1) with d =4 was already known to
Griinbaum and Sreedharan [10, p. 445].

THEOREM 3. Let Q C R? be a d-polytope, d =3, let F be a facet of Q and let p
be a vertex of F. Define: € ={G:G is a facet of Q, pE G, G#F}, & =
{G €& :dim(G N F)=d —2}. (D is just the set of facets of O adjacent to F and
containing p.) Assume: |9 |=d —1. (That is, the valence of p in Fis d —1.)

Then for every two disjoint subsets ¥, R of D with ¥ U R # & (including the
cases ¥ =, R =) the following pairs are strongly coverable in Q:

M) {FU S| R,

Q) E\(YU R)| .

In both cases, if x covers the suitable pair B l.szl, then vert(conv(Q U {x})) =
vert Q U {x}.

PrOOF. We shall prove coverability:

(1) R U F# &, hence either R U F# P or @ # € (the vertex p is not simple).
Apply Theorem 1 to a vertex figure of Q at p, and use Lemma 6.

(2) Follows from (1) by Lemma 5(b) with J ={p}.

The strong coverability and the assertion about the vertices of conv(Q U {x})
follow in a manner similar to the proper part of the proof of Theorem 2. |

5. Remarks

(1) Theorems 1, 2, 3 have been programmed and used in [4] for an inductive
construction of 4-polytopes with 8 vertices from those with 7 vertices. Surpris-
ingly, they yielded all the 1294 4-polytopes with 8 vertices. Moreover, the
programmed version of Theorems 1, 2, 3 has been repeatedly applied to the
4-simplex, and yielded the 4 4-polytopes with 6 vertices, and the 31 4-polytopes
with 7 vertices.

(2) If Q is a rational polytope (see [9, p. 92]) and Q' is the polytope
conv(Q U {x}) obtained from Q by means of any of our Theorems 1, 2, 3, then
Q' too is a rational polytope. This follows from the fact, which is easily
verifiable, that each of the Lemmas 1-7 is correct also if we replace the
Euclidean space R by the rational space Q°.

The fact that there exists a non-rational polytope (the “smallest” known is of
dimension 8 and had 12 vertices [9, p. 94]), shows that not all the d-polytopes can
be obtained from a d-simplex by a repeated application of our Theorems and
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Lemmas. In fact, one can easily check that, following Altshuler’s notation in [2],
the polytopes N3 and N3, cannot be constructed by our Theorems or Lemmas.

(3) Note that in parts (1), (2) and (3) of Theorem 2, the strong coverability of
each of the discussed pairs is completely independent of the combinatorial
structure of the facets of Q that are not in the pair. This motivates the following
definitions:

Let Q be a d-polytope and let B | s be a coverable pair in Q. We say that the
pair & lsd is universally coverable if for every d-polytope Q' such that there is
an injection ¢ from & U & into the set of facets of Q' with the property that
dim N ¢(€)=dim N & for every € C o U B, the pair ¢(RB) | ¢ () is coverable
in Q'. The concepts universally P-coverable pair and universally C-coverable
pair are defined similarly.

Obviously, universal coverability implies strong coverability.

It is easy to see that each of the pairs in parts (1), (2) and (3) of Theorem 2 is
universally coverable; in the notation of Theorem 3, the pair {F}U & | D\Z is
universally coverable and in the notation of Theorem 1, if Q is not a simplex
then the pair {F}U ¥ | P\ & is universally P-coverable.

(4) Lemma 5 can be generalized as follows:
Let J;C---CJ. =J (k=1) be a strictly increasing sequence of non-empty
proper faces of Q. Assume that &/ and % are two disjoint subsets of #;. Define:

9} = glp
€ =FNFN - \N(FNBUA))-)).

Lemma 8. If {F:FGQB}|{F:FE&4} is P-coverable in Q then € |&¢ is
coverable in Q.

PrOOF. By induction on k, using the same method of Lemma 5. |

The construction of Lemma 8 is called sewing through the k-tower Jy,- -, Ji.
It enables one to obtain additional theorems, in dimension d, from an existing
theorem in a lower dimension. Our Theorems can be viewed as particular cases
of sewing with k =1 and k =2. For example, Theorem 2(4) with n =m is
sewing through the 2-tower J, ={p}, J.=L, with B =o =.

In [14] the second author developed the sewing technique for constructing
neighborly 2m-polytopes (m =2). The “facet-splitting” operation of Barnette
[6] is dual to the sewing construction. The relation between these two construc-
tions is discussed in [14, section 7.4].
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(5) In Lemmas 1-3 we gave some necessary properties of coverability.
Another necessary property of a coverable pair is its shellability. (Consult [7]
and [8] for definitions.)

LEMMA 9. Assume B |.sz¢ is C-coverable in Q. Then Q has a shelling
Fl,"',Fr,"',F;,"',E, Oér-—s—S<t

such that B ={F,, -, F}, o ={F...,-+,F} and {F,,---,F} is the set of all
facets of Q.

PrOOF. We give the outline of the proof, based on lemma 2.1 in [7]. W.Lo.g.,
B ].sd is coverable in Q. By Lemma 1 there is a point h such that (h, F) <1 for
FE R, (h, F)=1for F € o and (h, F) > 1 otherwise. Choose a point k such that
(k,F) # (k, F') whenever F#F'. For A >0, define: f=h + Ak. Define also:
r=|RB|,s=r+|s|. If A is sufficiently small, then there is an ordering F,,- - -, F,
of all the facets of Q, such that (f, f’,-)<(f,ﬁ}) forl=i<j=t B={F, -, F}
and  ={F,.,,- -+, F.}. Bylemma2.1in[7] F,,- - -, F, is a shelling. B

(6) The problem of C-coverability for d = 3 is partially settled by Barnette’s
theorem [5]. Let P be a 3-polytope and let 9 be a non-empty set of facets of P.
An edge E of P is called a boundary edge of & if E is an edge of exactly one
member of 9. Then 3B l@ is C-coverable in P if and only if the graph spanned by
the boundary edges of & is a (non-empty) simple circuit.

(7) By aresult due to Shephard (see [16] or [11]), we obtain a similar result for
d-polytopes P with d + 2 vertices. Let % be a non-empty set of facets of P. Then
B | & is P-coverable in P if and only if the set U3 is a (d —1)-ball.
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